Nonlinear Rashba spin splitting in transition metal dichalcogenide monolayers.
نویسندگان
چکیده
Single-layer transition-metal dichalcogenides (TMDs) such as MoS2 and MoSe2 exhibit unique electronic band structures ideal for hosting many exotic spin-orbital orderings. It has been widely accepted that Rashba spin splitting (RSS) is linearly proportional to the external field in heterostructure interfaces or to the potential gradient in polar materials. Surprisingly, an extraordinary nonlinear dependence of RSS is found in semiconducting TMD monolayers under a gate field. In contrast to small and constant RSS in polar materials, the potential gradient in non-polar TMDs gradually increases with the gate bias, resulting in nonlinear RSS with a Rashba coefficient an order-of-magnitude larger than the linear one. Most strikingly, under a large gate field MoSe2 demonstrates the largest anisotropic spin splitting among all known semiconductors to our knowledge. Based on the k·p model via symmetry analysis, we identify that the third-order contributions are responsible for the large nonlinear Rashba splitting. The gate tunable spin splitting found in semiconducting pristine TMD monolayers promises future spintronics applications in that spin polarized electrons can be generated by external gating in an experimentally accessible way.
منابع مشابه
Large spin splitting in the conduction band of transition metal dichalcogenide monolayers
We study the conduction band spin splitting that arises in transition metal dichalcogenide (TMD) semiconductor monolayers such as MoS2, MoSe2, WS2, and WSe2 due to the combination of spin-orbit coupling and lack of inversion symmetry. Two types of calculation are done. First, density functional theory (DFT) calculations based on plane waves that yield large splittings, between 3 and 30 meV. Sec...
متن کاملSpin-orbit engineering in transition metal dichalcogenide alloy monolayers.
Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light-matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo(1-x)WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the ...
متن کاملOn the Stability and Electronic Structure of Transition-Metal Dichalcogenide Monolayer Alloys Mo1-xXxS2-ySey with X = W, Nb
Layered transition-metal dichalcogenides have extraordinary electronic properties, which can be easily modified by various means. Here, we have investigated how the stability and electronic structure of MoS2 monolayers is influenced by alloying, i.e., by substitution of the transition metal Mo by W and Nb and of the chalcogen S by Se. While W and Se incorporate into the MoS2 matrix homogeneousl...
متن کاملSpin-degenerate regimes for single quantum dots in transition metal dichalcogenide monolayers
Strong spin-orbit coupling in transition metal dichalcogenide (TMDC) monolayers results in spin-resolvable band structures about the K and K ′ valleys such that the eigenbasis of a two-dimensional quantum dot (QD) in a TMDC monolayer in zero field is described by the Kramers pairs |0〉− = |K ′ ↑〉 , |1〉− = |K ↓〉 and |0〉+ = |K ↑〉 , |1〉+ = |K ′ ↓〉. The strong spin-orbit coupling limits the usefulne...
متن کاملValley splitting in the transition-metal dichalcogenide monolayer via atom adsorption.
In this letter we study the valley degeneracy splitting of the transition-metal dichalcogenide monolayer by first-principles calculations. The local magnetic moments are introduced into the system when the transition-metal atoms are adsorbed on the monolayer surface. The Zeeman effect arising from the local magnetic moment at transition-metal atom sites lifts the valley degeneracy. Anomalous ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 8 41 شماره
صفحات -
تاریخ انتشار 2016